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Notation



Notation

Notation

Random variables

riskless return

return asset i

return indexed portfolio (e.g. DAX)
excess return asset i

excess return indexed portfolio

idiosyncratic component of ER;
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Notation

Notation

Observed values

observed riskless return

observed return asset i

observed return indexed portfolio
observed excess return |

observed excess return indexed portfo-
lio

residuals

5/36



Notation
Notation

R; sample mean

var(Ri) =Y. L (Ri: — R)? sample variance of R;
t=1
m —_

var(F) = = - (F. — F)? sample variance of F

1
m — =

cov(Ri,F) =Y. X - (Rit — R;) - (F: — F) sample covariance of F
t=1 and R;
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Notation
Notation

s; = y/var(R;) sample standard deviation of R;
sr = y/var(F) sample standard deviation of F
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Least squares Regression

Least squares Regression

Definition ‘regression’

Definition (Regression)

» Technique used for the modelling and analysis of numerical
data

» Exploits the relationship between two or more variables so
that we can gain information about one of them through
knowing values of the other

» Regression can be used for prediction, estimation, hypothesis
testing, and modelling causal relationships
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Least squares Regression

Least squares Regression

Definition ‘regression’

Regression line

A

R; is a prognosis of the return for a given value of F:

i‘\?,' =a;+ b;-F
Assumption: The sample distribution of F; (t = 0,...,n) corre-
sponds to the probability distribution of the random

variable F.

A

Conclusion: R; = E[R|F] (conditional expected value)
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Least squares Regression

Least squares Regression

Noise

Explained versus unexplained sample variation

Rix=aj+ bi- Fr +€i:

Ri:—R; . explained sample variation
Ri+ — Ri = €i+ : unexplained sample variation (colloquial: ‘noise")

R+ — R; . total sample variation

11/36



Least squares Regression

Least squares regression

Optimization calculus

Least squares regression means: The sum of the squared
residuals €;; gets minimised.

SSR; = Z (Ei,t)2 = Z(R"at — /’i’,"t)2 — min!
t=1

aj,b;
i:l 1 1

with

m number of observations in scatter plot
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Least squares Regression

Least squares regression

Optimization calculus

Conditions for a minimum of SSR;

( OSSR;
88,‘ =0
O0SSR; ~0
\  0b;
aj = F\’,’ — b,' 0 /_:
= _ cov(R;, F)

L bi var(F)
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Example: SIM

Example: SIM

SIM — Basic assumption

ER; = a; + b; - ERpy + ¢

with

ER, = R — ng random excess return on asset i

ERy = Ry — rp random excess return on indexed portfolio
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Example: SIM
Example: SIM

Definition (Security Characteristic Line)

The Security Characteristic Line is regression line

El\?,-:a,-er,--ERM

CAPM: Security Market Line

Single Index Model: Security Characteristic Line
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Example: SIM

Scatter plot (ERwm ¢+, ER; +)

excess return Peutsche Telekom

Scatter plot excess returns: Deutsche Telekom versus DAX

.
R?=0,2746

7127x-0,0092~

+—20g0s 20001

excess return DAX
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Example: SIM

ER; ; versus residuals ¢; ;

Monthly excess return Deutsche Telekom

—total

—systematic
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Example: SIM

Example: SIM

The residuals €; ; are not determined by ER; ;

Excess returns

. + Deutsche

Telekom
- forecasted
return

excess return Deutsche Telekom
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Example: SIM

Interpretation of b;

General: A
OER;
OERy

b;

Example: bpt = 0.7127, with DT denoting ‘Deutsche Telekom'.
» DT is less volatile than the DAX.

» For every 1% change in the DAX, we expect the return on DT
to change by 0.7127%.
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Example: SIM

Interpretation of a; in case of a SIM

General: e
ERM =0= ER,'(O) = a;

Example: ap7 = —0.0092.

» ERp = 0 means the DAX does not change, which is a random
event.

» If ERyy =0, DT's return is expected to be -0.0092.

» Conclusion: Other factors than the DAX have a negative
impact on DT's return.
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Example: SIM

Estimating b;
Recall that for random variables R; and ER; = R; — ry:

B — COV(Ri, Rm) _ COV(ER;, ERu)
' VAR(Rv)  VAR(ERy)

Background: The riskless return ry is by definition no random
variable.
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Example: SIM

Estimating b;
b; might be estimated either on the basis of
» observed raw returns R;; and Ry ; or
» observed excess returns ER; ; and ERp ;
These approaches will yield different results:
» Historically, the riskless rate takes different values.

» Correspondingly, ro ; will take different values in the sample.
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Multifactor regression

Method of least squares
Model input

n observations of m factors as model input

(Fit,- .., Fmt, Ri¢) is a pair of observed values. Each of the
following n equations corresponds to an observation (t =1,...,n):

gixr= Rix +aio +bii-Fii+ ... +bim-Fm1
gig= Ri2 +ajo +bi1-Fio+ ... +bim-Fm2

)

Ei,n = Rin +aio +bi,1 : Fl,n+ cee +bi,m “Fm,n

)
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Multifactor regression

Method of least squares
Model input

n observations as model input

& =Ri+M-k

specific to asset i common to all assets in
analysed portfolio

2,0

€j1 Ri1 1 Fa ... Fpa
gj Ri Biry 1 F [
gi _ i,2 ;'F‘;i _ i,2 ;El_ _ b;12 M= 1,2 coo m,2
€i,n Rin b-. 1 Fi,n Fm,n
i,m
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Multifactor regression

Method of least squares

Optimization calculus

Least squares regression means: The sum of the squared
residuals ¢; ; gets minimised.

SSR; = f(l?,-) — min!

a;,0,bi,1,--;bi,n

with

f(k) = (R,-+I\/I-k,-)T- (Ri+m-K)

M7 is the transpose matrix of matrix M.
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Multifactor regression

Method of least squares

Optimization calculus

The gradient of f is the vector of the derivatives of f.

of
6.3,-70

of
Vfi=| %

of
ob; m

V£ is read as ‘nabla f'.
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Multifactor regression

Method of least squares

Optimization calculus

Gradient of f

Vi = MT - M-ki+k7 -MT-M—-2-MT . R
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Multifactor regression

Method of least squares

Optimization calculus

The vector l_<',- that minimizes the sum of square deviations
fulfils the condition:

Vf =
& MT-M; -k =M R,
&k — (MT-M)""-MT R,
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Quality of regression

Quality of regression

Coefficient of determination

Definition (coefficient of determination)

m 1 , =

> —(Rit = Ri)
RD} = 5 -

; E(Ri,t — R;)?

» In statistics, the standard notion of the coefficient of
determination is R? (‘R-squared’).

» For this lecture the notation F\’Di2 is chosen to avoid confusion
with asset returns R;.
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Quality of regression

Coefficient of determination

m

Quality of regression

not ‘explained’ by regression
line

part of sample variance of R; ;
‘explained’ by regression line

total sample variance of R; ;
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Quality of regression

Quality of regression

Coefficient of determination

Interpretation

RD2 sample variance of R;; ‘explained’ by regression line

1

total sample variance of R; ;

» Correspondingly: RD? € [0, 1]

» The higher RD,-Q, the better the predictive nature of the linear
regression model.

> RD,-2 = 1 implies that the asset's idiosyncratic risk is expected
to be zero.
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Quality of regression

Quality of regression

Correlation coefficient

Definition (correlation coefficient)

cov(R;, F)
PiF=——"
S;*SF
with
sF sample standard deviation of F

s; sample standard deviation of return on asset i
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Quality of regression

Correlation

Interpretation

img(pi,F) = [-1:1]

» pi.r = 0: No correlation.
» pi,F = 1: Perfect positive correlation.

» pi,F = —1: Perfect negative correlation.

In case of a simple linear regression:

RD; = (pir)?
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